
 

 

 

 

 

2016, 5(2): 1628  

DOI: 10.1515/ijicte-2016-0006 

  16 

 

SOLVING A LINEAR OPTIMIZATION WORD PROBLEMS BY 

USING GEOGEBRA 

Pavel Molnár 

Department of Didactics of Mathematics, Faculty of Science,  

Pavol Jozef Šafárik University, Jesenná 5, Košice, Slovakia 

pavel.molnar@student.upjs.sk 

Abstract 

Today's modern age is characterized by the rapid development of information and 

communication technologies, which is also reflected in the educational process. It is therefore 

necessary to prepare the young generation of even at primary and secondary schools to solve 

problems from real life. Using the appropriate motivation, innovative methods and application 

of modern information and communication technologies into the teaching process, we can 

succeed. Constructions created using by dynamic geometry systems bring new opportunities 

to learning. The aim of this article is to introduce the possibility of using GeoGebra in 

graphics solution of system of linear inequalities and also in the geometric interpretation of 

solutions to word problems leading to the linear optimization. The article describes the 

observations of experimental teaching, where was used GeoGebra. The experimental teaching 

was conducted at a grammar school in Košice. GeoGebra offers suitable tools to create 

graphical models in solving the optimization problems. 
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Introduction 

Technology comes in many variants such as data handling and graphing software, computer 

algebra systems, programming languages, programmable calculators, and dynamic geometry 

systems (DGS). Among these, the use of DGS has gained popularity in recent years in parallel 

to the development of various products such as Cabri, Geometer’s Sketchpad, and most 

recently GeoGebra. Kokol-Voljsc (2007) stated that in teaching and learning geometry, 

particularly Euclidean geometry, and solving problems related to geometry concepts, DGS are 

the most appropriate tools. Laborde (2002) pointed out that the use of DGS evolved over time 

from being a visual amplifier to a fundamental component that enhances conceptual 

understanding. Duval (1998) argued that DGS are superior to paper-and-pencil based (PPB) 

methods as they dissociate the “figure” from the “process of drawing”. This allows students to 

understand the properties of the figure before it is being sketched on the screen. 

In 2001, Markus Hohenwarter began to develop the system GeoGebra. Gradually, the group 

expanded by an additional programmers. The creators of GeoGebra continue its development 

and constantly replenished to new functions and modules. In an effort to create a complex 
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mathematical program has been implemented into the GeoGebra a module for computer 

algebra systems (CAS). (Hohenwarter & Hohenwarter, 2013) The current version (version 

5.0) now offers to users the window on the 3D geometry which allows you to work with the 

solids in three-dimensional coordinate system. GeoGebra is now functional on a mobile 

platform that allows its use for tablets, resp. for mobile phones.  

Teaching fourteen and fifteen year old mathematics presents many challenges. Engaging these 

students can be difficult, especially as the mathematics they study becomes more abstract. 

Dynamic geometry offers opportunities to bring the real world into the mathematics 

classroom, to add visualization, colour and animation not possible in a traditional classroom 

and to deepen the mathematical thinking we expect of the students in various topics of the 

curriculum. (Pierce & Stacey, 2011) 

There are too many surveys about the using DGS in mathematics education. Many of them 

show that DGS are not making sufficient and if they are used, so almost exclusively in 

teaching geometry. From surveys, it is clear that the GeoGebra is the most popular software, 

and therefore we continue to devote only about the GeoGebra (Molnár & Lukáč, 2015), 

(Kriek & Stols, 2011), (Ainley et al., 2010). So we decided to show the possibility of such the 

GeoGebra can also be used in other areas such as in geometry. 

Graphical solution of system of linear inequalities 

At the outset, we would like to show the possibilities of the program GeoGebra for graphical 

solution of system of linear inequalities (Task 1). 

Task 1 
Solve the system of linear inequalities graphically in R2: 

                                                                     

        

                                                                             

The solution of this system is by using GeoGebra very visual. Just write the three inequalities 

to the input line of the form: 

 . 

GeoGebra then draws a set of possible solutions to inequalities of the system (Fig. 1). Then 

we can by using the tool "Point on object" to insert point that we can move within the drawn 

set. From an algebraic window we can read its coordinates and therefore also the solution of 

system of linear inequalities (Fig. 1). 
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Fig. 1: Solution of system of linear inequalities 

The experimental Teaching 

Experimental teaching we realized at the grammar school in Košice. It consisted of two 

lessons. During the lesson, which preceded our experimental teaching students tackled a 

graphical solution of linear inequalities. They drew in their workbooks half-planes that meet 

the specified inequalities. During the experiment we tried to actively engage students into 

exploring the context. We also wanted to raise students' interest about the linear optimization. 

In the experiment was involved mathematical class in the first year. In the classroom was 

located during the experiment 25 students. Of which was 16 boys and 9 girls. Students during 

these two lessons were given two worksheets. During the first lesson students were familiar 

with the graphical solution of linear inequalities, the issue of linear optimization, as well as 

with the program GeoGebra. Students have mastered control of the GeoGebra very quickly, 

because it was for them intuitively. During the second lesson, students were working with 

second worksheet, which was devoted to word problems leading to the linear optimization. In 

the next part of this article we will focus on both worksheets.  

The worksheet 1 

Worksheet 1 consisted of six tasks. Tasks 2 – 4 formed a worksheet 1. Besides these, there 

were three more tasks, but out of curiosity we pick out just those three. 

Task 2 

Solve the system graphically: 

           

 

        



, 2016, 5(2): 1628

  19 

 

Fig. 2: Task 2 request 

Note: Students have mastered that task quite well. Students had to solve a system of two 

inequalities and one equation. Twenty students had that task resolved correctly and five 

students had incorrectly solutions. For students who have not solved that task correctly was 

the biggest problem an unclear cross hatch (shown in the next task), or bad determine the 

half-plane under the sign of inequality (Fig. 3). It was clear to see that some students had 

problems with determining the correct half-plane that satisfies the inequality. Some students 

identify the right half-plane with the help of chance. 

 

Fig. 3: Demonstration of the student solution of Task 2 

Task 3 

Solve the system graphically: 
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Fig. 4: Task 3 request 

Note: In this task was reflected the confusing cross hatch even more than in the previous task 

(Fig. 5), as it is a system of four inequalities. That task correctly solved fifteen students. Other 

students solve this task wrong, respectively, the task did not manage to resolve. Some of the 

students who did not manage to resolve that task had no problems with previous tasks. 

Therefore, we conclude that did not solve task of the time pressure. At this task has been our 

intention to show to students the benefits of GeoGebra. Of course only after the submission of 

the worksheet. 

 

Fig. 5: The confusing cross hatch 

Task 4 

Locate such solution of the system of inequalities 

                

  

    

for which is the number x + 2y 
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a) the least 

b) the greatest. 

 

Fig. 6: Task 4 request 

Note: This last task served as a transition from the solving systems of linear inequalities to the 

linear optimization. Since the some students have not manage even a previous task, so that it 

was even worse. Of course some students have managed to finalize the solution of the task 

(Fig. 7). 

 

Fig. 7: Demonstration of the student solution of Task 4 

After the handover of the worksheet we showed to students the possibility of the system 

GeoGebra. Students who did not manage to solve all tasks have been happy that they with the 

GeoGebra can do it. Later we returned worksheets to students so that they can solve the tasks 

at home by using GeoGebra. 

In the next lesson we continue the last task from the first worksheet and we went through on 

word problems on linear optimization. 
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The worksheet 2 

Worksheet 2 consisted of three tasks. Tasks 5 – 7 formed a worksheet 2. Students solved the 

worksheet individually during a one lesson. 

Task 5 (Cechlárová) 

FarLak company produces two kinds of paints: Z and V, which sells for 5000 (Z) and 2000 

(V) EUR per tonne. The company uses two kinds of raw materials, A and B, whose stocks are 

6 t (A) and 5 t (B). Per one tonne of paint Z are necessary 3 parts of raw materials A and 1 

part of raw materials B. To produce one ton of paint V are necessary 2 parts of raw materials 

A and 2 parts of raw materials B. How many of the paint type, the company FarLak do, if they 

want to make the most money? 

Note: Any data for which there is a star (*) have not been on the worksheet and students had 

to supplement their own. 

Students have available in this task a summary table, under which they had to complete the 

condition (inequality) for raw material B. 

 Paint Z Paint V 
Resources 

(t) 

Raw material A 3/4 2/4 6 

Raw material B 1/4 2/4 5 

Price (EUR) 5000 2000 --------- 

Quantity (t) x y --------- 

On the basis of the table, students have work towards the following system of linear 

inequalities: 

The condition for the raw material A: 

  

Students had to complete the condition for the raw material B: 

 (*) 

Amount of paint Z: 

 

Students had to complete the condition for paint V: 

 (*) 

Students had written in this task also the prescription of the target function which is the 

revenue which we want to maximize: 

 

and also a shape the enrolment of inequalities in which they should be entered in the input line 

in GeoGebra: 

 

Students had into the figure (Fig. 8) draw a line that will provide a maximum revenue. 
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Fig. 8: Producing paints 

Finally, students should formulate an answer and thus, if the company FarLak wants to make 

the most, then it must produce 8 tons of Paint Z and 0 ton of Paint V. The revenue in this case 

would be 40 000 EUR. 

Note: All of 25 students knew the correct plot a straight line representing a maximum direct 

revenue, which proves that they understand the issue of optimization. Up to 11 of them been 

not written an answer. 7 wrote a full answer and 7 wrote a result in the form x = ... y = ... . 

For all students it was clear that they understand the issues of linear optimization. 

Task 6 (Oravcová, 2013) 

Research about the development of animal production showed that the fattening of farm 

animals is very advantageous if in the daily doses of each animal will receive at least 6 units 

of nutrient A, at least 12 units of nutrient B and at least 4 units of nutrient C. For fattening 

using two types of feed, K1 and K2. One kilogram of the feed K1 contains 2 units of the 

nutrient A, 2 units of the nutrient B and no nutrient C unit. One kilogram of the feed K2 

contains 1 unit of the nutrient A, 4 units of the nutrient B and 4 units of the nutrient C. 

Furthermore, we know that for 1 kg of the feed K1 to be paid 0.50 EUR and of the feed K2 to 

be paid 0.60 EUR per 1 kg. How much kilograms of the feed K1 and K2 should be given to one 

animal, the cost of fattening were minimal? 

Note: Any data for which there is a star (*) have not been on the worksheet and students had 

to supplement their own. 

Also in this task students have at their disposal a table, but some details should add 

themselves on the basis of definition of the task 

 Feed K1 Feed K2 Minimum quantity 

Nutrient A 2 (*) 1 6 
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Nutrient B 2 (*) 4 (*) 12 (*) 

Nutrient C 0 4 (*) 4 (*) 

Price (EUR) 0,50 (*) 0,60 (*) ----------- 

Quantity (kg) x y ----------- 

On the basis of the table, students should ultimately to bring about the following system of 

inequalities: 

Nutrient A:  

Nutrient B:  (*) 

Nutrient C:  (*) 

 (*) 

 (*) 

Students should then write a prescription of the target function that we want to minimize: 

 (*) 

Students had also in this task available the figure (Fig. 9) to which they plotted the position of 

the straight line representing the investment.  

 

Fig. 9: Mixing of feed 

Finally, have students write an answer again: One animal should be given 2 kg of feed K1 and 

2 kg of feed K2. 

Note: Students had no problem to replenish a table based on definition of the task. The 

problem was the change from the maximization to minimization. 3 students could not properly 

a trace the line and hence could not resolve an exercise. These three students does not seem 

to quite grasp the concept of minimizing costs for fattening. For remaining 22 students was 
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repeated a position from the previous task. Thus, 10 students wrote an answer and of the 

remaining 12, only 6 enrolled an answer with whole sentence.  

 

Task 7 (Berežný & Kravecová, 2012) 

Businessman produces two types of products: product A and product B. He employs a two 

staff members whose productivity is about the same. Production of the one product A takes 

four hours and the final machining takes two hours. For the product B is nine hours for 

production and one hour for the final machining. Each piece of the product takes in stock 1 

m3, and storage capacity is 12 m3. For production of products has a businessman maximum of 

90 hours, on the final machining has a maximum of 20 hours. Profit from the sale of one 

product A is 65 EUR, B product is 48 EUR. How many pieces and whose products has a 

businessman to do that be the maximum profit? 

Note: Students had at the last task to available only the empty table that had to replenish 

themselves and guidelines for the further work. 

 

 

 

 

First, students should replenish a table: 

 Product A Product B Capacity 

Manufacture (h) 4 9 90 

Machining (h) 2 1 20 

Storage (m3) 1 1 12 

Profit (EUR) 65 48 ---------------- 

Quantity x y ---------------- 

Subsequently have the students with the help of the table write conditions (inequalities): 

 

      

      

      

      

They also have to write a target function which represents a profit: 

 

Students had to solve the task graphically using the GeoGebra and formulate an answer. 

Note: The problem in this task was the preparation of the table. Some students (3) could it not 

and they failed to resolve (Fig. 10). Other students were able to replenish a table, and then 

write also a system of inequalities. Students who have achieved this first (5) solve the task 

using the GeoGebra on our laptop. Others were given the task to install GeoGebra at home 
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and send us an exercise solution. All students, except those who failed to prepare a table also 

sent us a solution. Again, something happened that on previous tasks, students did not write 

the answers. 

 

Fig. 10: Demonstration of the student solution of Task 7 - Table 

 

Fig. 11: Demonstration of the student graphic solution of Task 7 

Results & discussion 

In our experiment, the students met with the GeoGebra for the first time in their lives. Its 

control they mastered easily. On students was perceptible an increased activity when we allow 

them to work on our laptop in the last exercise. Students took the possibilities of GeoGebra 

because the experimental teaching took place on Friday and they sent us their solutions once 

on Saturday and Sunday. In doing so, we told them that there were a one week.  

For the greatest benefit of GeoGebra students considered it clearness. Of course, the deeper 

meaning see only students who have mastered the curriculum of solutions of linear 

inequalities. These students especially appreciated the speed of construction, because they do 

not have to reside with drawing. Some students even said: "Finally, I do not exactly draw!". 
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Interested in working with the GeoGebra expressed mainly boys. After the lesson, the two 

boys asked us for other uses the GeoGebra. 

The biggest positive for us was the motivating factor of the GeoGebra. Students met with the 

GeoGebra for the first time in their lives and it was for them something new. Of course, if 

they worked with the GeoGebra very often, the motivational effects would not be so high. 

Therefore, we think that the occasional inclusion of the GeoGebra in teaching of mathematics 

can be very beneficial.  

The biggest problem for students were writing the verbal answers in connection with the 

award of task. Apparently they are not used to from a classroom teaching. Because it was a 

math class, then just a solving exercises was not problematic. Aside from the mentioned cases 

where students were unable to do a summary table. In this case, students could not select the 

right information from the assignment of the task. Ultimately, we evaluate the experiment as a 

successful. We were surprised mainly of students' interest in working with the GeoGebra.  

Conclusion 

The aim of this article was to introduce the reader to the possibilities, how can a dynamic 

geometry system (GeoGebra) use in the teaching of mathematics. The emphasis in this article 

is put mainly on the use of GeoGebra in other than the geometrical area. The tasks were 

aimed at resolving the problems of linear optimization with the help of modelling that is 

currently by using GeoGebra very visual and easily understandable for students. 

In the current information age, students face a demanding knowledge-based economy and 

workplace, in which they need to deal effectively with complex, dynamic and powerful 

system of information and be adept with technological tools. The need to develop students’ 

abilities to successfully use technological tools in dealing with complex solving for success 

beyond school has been emphasized by a number of professional organizations. 

An appropriate medium for achieving this goal for students is mathematical modelling, a 

process that describes real-world situation in mathematical terms in order to gain additional 

understanding or predict the behaviour of these situations. Using the models and modelling 

perspective, students have opportunities to create, apply, and adopt mathematical and 

scientific models in interpreting, explaining and predicting the behaviour of real-world based 

problems. 
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