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ABSTRACT 

This paper is primarily devoted to development of an educational desktop application, that describes terrain 
generating and pathfinding to students. The application is meant for lessons of Artificial Intelligence, that is one of 
compulsory optional subjects on Department of Informatics and Computers, University of Ostrava. Selected 
implemented algorithms enable to generate a terrain with adjustable parameters in three different implementations 
and it also enables pathfinding in three different ways. Used methods are compared according to different criteria for 
better understanding. Algorithms used in the application for terrain generating are fault method, hill algorithm and 
value noise. For pathfinding, there were used Dijkstra algorithm, A* and breadth-first search. The application enables 
camera movement around the terrain and graphical projection of costs of edges for pathfinding. 
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1 INTRODUCTION  

In today´s computer games, algorithms for terrain generating and pathfinding are used very often. Although 

this field is well known, there is still room for improvement, mainly because of time and space complexity 

or realistic terrain appearance.  

Talking about available terrain generators, most of them provide procedural terrain creation followed by 

free editing. This ensures that terrain meets our requirements and we don´t have to create everything 

manually, which results in time saving. Most of current terrain generators doesn´t create real 3D landscape. 

In fact, it is only pseudo 3D terrain, sometimes called 2.5D. 2.5D is used in presented application. Noise 

functions are often used for terrain creating. However, you can use them for example to simulate 

handwriting or texture creation. As for pathfinding, we can see it not only in computer games, but also in 

the real world. These are, for example robotic vacuum cleaners looking for optimal routes or navigation 

systems. 

Main reason of creation of the application was an attempt to give students an idea about possibilities in the 

field of terrain generating and pathfinding. Graphical output provides better understanding of used methods, 

thanks to their visual representation. 
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2 TERRAIN GENERATION POSSIBILITIES 

There are many ways, how to deal with the generation of terrain. However, the methods try to do the same, 

creating something that resembles real terrain. The degree of similarity depends on purpose for which the 

terrain is created. In computer games, there is sometimes excessive realistic undesirable and landscape is 

often required to be adapted for fast processing and gamer´s walk-through of game. 

The first option, how to create terrain is to generate it from curves. Unfortunately, in this case, it is difficult 

to simulate impression of randomness and the description of the terrain is also very complex. Generally, 

this approach isn´t used very often. The second way, and the more frequent, is “pure” procedural generation. 

Here are procedures using fractal geometry. 

First mentioned method is fault method, which has a very simple procedure. First, a matrix of points is 

created, where each point has height set to zero. Subsequently, the area of matrix is divided into two parts, 

most often by a single line. The height of a part increases by some value and the height of the other is 

reduced by the same value. The procedure is then repeated, until we get desired appearance. We don´t need 

to work only with lines. Any shape can be used to divide area into two parts. Besides the variation, when 

we change height like in previous text, we can use other possibilities, to create a smoother surface. For this 

we use for example the sinus or the cosine functions (Fernandes, n.d.). 

The second option for terrain creation is diamond-square algorithm. A condition of its use is to work with 

square array, but nothing prevents us from creating large square array and after procedure of creating 

terrain, we can “cut out” a rectangle or other non-square shape. The main principle is that we assign height 

values first to the centre of the square and then to the centres of sides of this square. Than we repeat process 

for newly created squares. Everything is repeated until the whole field is full of values of height. 

Another here presented option is hill algorithm. It works by randomly choosing locations on which it creates 

hills. We can influence parameters of the hills such as location and size. If the new hill interferes with any 

of the previous, the final height of the collective points is sum of the height of point from an original hill 

and a new hill. We can affect the appearance of terrain by adjusting the range of random values or 

decreasing the maximum possible radius value with each new paraboloid or reducing it only for the certain 

number of new paraboloids (Nystrom, n.d.). 

Value noise is another option. It is based on a composition of several grids together. Grids are generated 

with decreasing spacing between selected grid vertices. For the first octave, this spacing is the largest 

possible – grid size – meaning only four vertices are selected. Height of selected grid vertices is randomly 

generated from predetermined range and height of vertices between them interpolated. Appearance can be 

easily improved be creating one or more new octaves with a smaller spacing. The more octaves are created, 

the more it looks realistic. These octaves are eventually added together to build the final terrain. It should 

be noted, that every other octave has a higher frequency (smaller spacing) and a lower amplitude (smaller 

random height interval), otherwise summation of octaves wouldn´t have desired impact (Code.google.com, 

2011). 

Very popular technique is use of a Perlin noise, as it can be generally used in any number of dimensions. 

But we work most often only maximally with three dimensions. The main idea is that, for example for 2D, 

the function accepts parameters x, y and returns a single value, as well as in 1D or any other dimension. 

Returned value is always from <-1,1>. It should also be noted that for the same input values the function 

always returns the same output value (Biagioli, 2014). For more info about an improved Perlin noise see 

(Perlin, 2002). 

Ken Perlin, author of Perlin´s noise, also created a simplex noise. Although the Perlin´s noise is abundantly 

used, it suffers from several ailments, that the simplex noise tries to remove. The main differences are lower 

computational difficulty and the fact that its generalization to higher dimensions is computationally less 

demanding than for original Perlin noise (Gustavson, 2005). 
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Terrain editing and completing 

Already created terrain can be modified by below mentioned methods to meet our ideas. We can, for 

example, try to increase valleys. This can be done simply by raising normalized values of height of each 

point to the power of two. This step affects more lowest values and higher values only a little bit. If larger 

valleys are needed, it is possible to use raising to the power of three, etc. (Nystrom, n.d.). 

For the creation of islands is suitable hill algorithm. The goal is to prevent the hills from being placed in 

contact with the edge of the terrain. This will create an island. Of course, we can set the island´s minimum 

distance from the edge arbitrarily. With enough hills in the centre of area, it looks like the island. 

Mountains generated by the above-mentioned methods, unlike the true mountains in nature, look like 

mountains even turned upside down. Only geologically young objects achieve this in the real world. 

Therefore, it is necessary to use for example erosion algorithms on the generated terrain to make the 

mountains different from the valleys. The main three groups of erosion used it terrain editing are thermal 

erosion, hydro erosion and wind erosion (Žára, 2004). 

3 PATHFINDING 

Finding paths in a map means finding paths in graphs by using graph algorithms. All points, that we can 

find during searching are represented as nodes of graph. Connections between nodes are represented as 

edges. 

Well-known pathfinding algorithm is the breadth-first search. Graph is searched symmetrically. This 

means, that it spreads equally into all sides. It doesn´t favor any of his neighbors. So, we can say, that 

algorithm always extends into nodes lying in the distance v sooner than in distance v+1. Other well-known 

possibility is the depth-first search.  It, as well as the breadth-first search, is uninformed method as it doesn´t 

take into account the location of target node and doesn´t use heuristic. This algorithm may not find the 

shortest path from start to end. This is ensured only if graph is tree-shaped and start node is root node 

(Kolář, 2000). 

Dijkstra algorithm works with values of edges. It is used to find shortest path in weighted graphs. Weight 

of edge can´t be negative number. It is not necessary for the shortest path to have the least possible number 

of nodes, but sum of values of edges is always the least possible (Kolář, 2000).  We can also use Bellman-

Ford algorithm. This method can be used also for unweighted graphs, which is the main difference over 

Dijkstra algorithm.  

A* algorithm is in the category of informed algorithms because, unlike those already mentioned, it uses a 

position of a target node. We can say, it looks for optimal path and explores less nodes than Dijkstra 

algorithm. Algorithm uses function f(u), so-called heuristic function, which is for each node determined as 

follows:  

𝑓(𝑢) = 𝑠(𝑢) +  𝑐(𝑢) (1) 

Value s(u) is distance between used node and start node. For this number we can use value calculated as in 

Dijkstra algorithm. Value c(u) is an estimate of distance from used node and the target. For the estimate of 

the distance we can use for example Manhattan metric or Euclidean metric (Kolář, 2000). 

SMA* is abbreviation for Simplified Memory Bounded A*, it is an algorithm based on A*. Main significant 

difference, is that the algorithm has a limited memory size compared to A*. Therefore, it is necessary to 

define which nodes are stored in memory and which are removed (Russell, & Norvig, 1995). 

4 APPLICATION 

The application is written using the Java programming language, version 8. OpenGL (Open Graphic 

Library) was also used, accessed through the LWJGL (Lightweight Java Game Library). Application can 

be found at: http://www1.osu.cz/~svabek/TerrainApplication.zip  

http://www1.osu.cz/~svabek/TerrainApplication.zip
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Application environment 

 

Figure 1 GUI 

The application consists of three main parts. The first part is a window for terrain. The second part is section 

located on the right side, enabling to user interact with program. Last part is a text listing below the main 

window, where we can see the result values for each algorithm after pathfinding. 

Application control 

The application is controlled by elements on the right side of the window, a keyboard and a mouse. The 

Turn on graphic output button displays the terrain created by the value noise. Switching between different 

terrains is done by selecting Value noise, Hill algorithm or Fault algorithm. When the Create button is 

pressed, the terrain is replaced by a new one. The Start and finish checkbox highlights two blue spheres 

that represent the start and finish of the path. Their starting position is in the upper left corner, unless the 

terrain is rotated differently. By selecting the Graph checkbox, a chart appears over the terrain. It represents 

difficulty of transition between nodes by its color. The sliders in the Start and Finnish sections allow user 

to set the starting position and destination for the pathfinding. In each section, one slider represents 

coordinate on the x-axis and the second on the z-axis. The slider in the Graph section deals with the y-axis. 

It increases and decreases the offset from the terrain of the chart as well as of the start and finish spheres 

and found paths, if they are visible. The Find path checkbox will search for paths between start and finish 

with use of predefined algorithms. These paths are displayed in the terrain and some of their values are 

listed in the text box below the terrain window. Found paths differ in color. How colors are assigned to 

individual algorithms can be seen next to the text box. The Smoothing, Erosion, Dilatation and Alternative 

erosion buttons are used to adjust the generated terrain. Through their proper combination we can achieve 

much nicer and more natural terrain than the initial terrain provides. 

When user click on the window where the graphical output is displayed, it is possible to rotate, move and 

zoom the terrain. The w, s, a, d keypad keys make the camera move forward, back, left and right. The upper 

and lower arrow keys allow to move the camera up and down. The movement of the mouse controls the 
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overall position of the camera, which rotates around the red dot, which is the center of the view. The mouse 

wheel controls zooming in and zooming away from the center of view. 

Specification of  text output 

The text output contains four columns. The first one specifies algorithm used for the path. The second one 

stands for number of scanned nodes. This value increases when algorithm finds unexplored node and 

changes the values of its variables. The third column represents difficulty of the path. It is the sum of 

difficulties of edges that creates path. The last column is number of nodes of path. This number indicates, 

how many nodes the path contains. 

It is possible to have objection, that algorithm find the shortest path only if it explores all nodes. That is 

true, but for the testing purpose and specially to see savings in nodes exploring for A* versus Dijkstra 

algorithm, a variant of the so-called early termination was chosen. So, the search ends when the finish node 

is found. 

Graph 

Each node in the graph is linked to nodes in its immediate vicinity. If we don´t take into consideration nodes 

on edges of space for terrain generating, then the number of neighbors is always eight. The color of the 

edge between two adjacent nodes indicates, how difficult it is for the search algorithm to use it. We can say 

that green means rather a flat surface and red means steep edge. This is based on used evaluation function 

(2). 

𝑦 =
1

−(|𝑏𝑦 − 𝑎𝑦| + 1)
+ 1 

(2) 

Here by stands for height value of node, ay stands for height of one of his neighbors. Since absolute value 

is always greater or equal to zero, y is always positive number in the interval <0, 1). The y value is than 

used for assign color to edge by command GL11.glColor3f(y, 1-y, 0). Function glColor3f accepts the red, 

green and blue values of color as parameters in range <0, 1>. 
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Figure 2 Colored edges 

Generation of  terrain 

Application implements three methods: fault algorithm, hill algorithm and value noise. The reason for this 

choice was the fact, that these methods don´t provide the satisfying terrain unlike the Perlin´s noise. The 

main aim was to find out, if we can get a good-looking terrain from them thank to the follow-up adjustments. 

All three algorithms use a random number generator in their implementation to ensure that each terrain is 

original. 

The terrain is a field of vertexes (129*129). Vertexes at the extreme edges are not rendered and serve only 

for calculations. Each vertex has value of its height. That´s why we´re talking about creating 2.5D terrain 

and not about the real 3D. We can never create caves or overhangs. Vertexes are grouped into strips of 

triangles and these are then rendered in the graphical output window. The following are examples of each 

algorithm without any modification. 

 

Figure 3 Value noise 
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Figure 4 Hill algorithm 

 

Figure 5 Fault algorithm 

Editing of  terrain 

An appropriate combination of modifications creates a wide range of different shapes. All terrain 

adjustments implemented in program are based on a principle, that the new height value for vertex is created 

by height values of surrounding vertexes and its own height. 
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During smoothing we make an average of 8 neighbors and twice the middle vertex itself. For vertices that 

lie on the edge of field, we work with smaller neighborhood. The central vertex is counted twice to increase 

its influence, eventually reducing smoothing effect. 

Erosion works only slightly differently. We again work with one vertex and its neighborhood. But now we 

add only values of height, that are smaller than height of central vertex, and twice the height of central 

vertex itself. The sum is again divided by the number of used vertices. This modification used multiple 

times results in creation of craters.  

Dilatation of the terrain causes its visual swelling and aligning. The sum in this case includes vertexes 

whose height is greater than value of central vertex. 

The last created option is an alternative erosion. Compared to the previous one, it uses randomness. The 

vertex height is used only if random value generated from the interval <0, 1> is greater than 0.8. Final value 

is equal to sum of used vertexes divided by their number plus one plus random value from <0, 1>. 

To avoid unwanted visual artefacts or terrain behaviour, such as waves, it is necessary not to change values 

of vertexes immediately. Therefore, the second field of vertexes with the same size is created and newly 

calculated values are stored in it. Finally, these two fields are swapped. 

 

Figure 6 Craters 

In figure 6, we can see a multiple application of erosion on a terrain created by fault algorithm. 

Pathfinding 

To demonstrate the algorithms that are looking for a path were chosen Dijkstra algorithm, A* in three 

modifications and breadth-first search. All these methods use a priority queue to store nodes while going 

through terrain. Nodes are ordered according to the rating function. The higher the value is, the further the 

nodes are inserted from the beginning of the queue. At the beginning, the queue always contains only the 

start node. Than nodes from his neighbourhood are added according to priority. First node in the queue is 



Grossmannová P., Švábek D.  ICTE Journal, 2017, 6(4): 1526 

2017 ICTE Journal, ISSN 1805-3726  23 

removed from it and his neighbours are explored. If these are not field’s border nodes, then number of 

neighbours is always eight. To consider the fact that the diagonal transition is longer than the horizontal 

and vertical transitions, the diagonal values of difficulty are multiplied by √2. The edge evaluating 

procedure is similar to the procedure of colorful graph creation. Difference is that now even transition over 

flat surface is not zero. See equation (3). 

𝑦 =
1

−(|𝑏𝑦 − 𝑎𝑦| + 1)
+ 1 + 0.01 

(3) 

Here by is the height of the node and ay is the height of one of his neighbors. Value of 0.01 will guarantee 

that even a crossover over flat surface will not have a zero value of difficulty. 

A* uses the approximate direction in which the target should be. Program shows three possible variants. 

The first of them uses the Manhattan metrics. The second is Euclidean metric that uses real value of edges 

and the third is Euclidean metric that uses edges evaluated by 1. The use of the A* results in decrease of 

explored nodes. The price for this reduction is loss of possibility to find only optimal path. This path can 

be the shortest one, but it is not ensured. If we want to compare the Euclidean and Manhattan metrics, then 

we need to say that Euclidean uses more demanding mathematical operations, such as the division. This 

results in its increased time complexity. 

Function used by A* to insert a node into the right place consists of two values: the node´s shortest distance 

from the start, that is found by previous steps of the algorithm and the value calculated by one of three 

previously mentioned options. The latter value may be quite inaccurate and represents only an estimate.  

 

Figure 7 Found paths 

Comparison of  pathfinding algorithms 

Pathfinding was executed twenty times on randomly generated terrains. The starting position was in the 

upper left corner and position of finish was in the bottom right corner. 
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Dijkstra algorithm always found the shortest path but with larger amount of explored nodes than A*. Due 

to same location of start and finish and the also fact, that breadth-first search doesn´t use value of edges, it 

had always same number of explored nodes and same number of nodes of path. 

Terms from the two following tables are defined in previous text. 

Table 1 Pathfinding algorithms 

Algorithm Average number of 

explored nodes 

Average 

difficulty of the 

path 

Average number 

of nodes of path 

Dijkstra algorithm 15 914.85 33.59 214.45 

A* with Manhattan metric 578.85 67.71 242.60 

A* with Euclidean metric 3 171.90 49.71 227.35 

A* with Euclidean metric, where 

value of edges is 1 

634.70 64.67 134.00 

Breadth-first search 127 510.00 67.67 127.00 

 

Figure 8 Pathfinding algorithms according to path difficulty 

Comparison of  method for terrain generating 

Raw terrain generated by methods presented in the application is quite unrealistic. In the case of the fault 

algorithm, there are visible places where there was radical increase on the one side and decrease on the 

other side. This isn´t usual in real world due to erosion and other influences. Therefore, it is necessary to 

reduce visibility of these visual artefacts by some modifications. Also, the output of hill algorithm looks 

artificially. Only the value noise doesn´t have such visible visual artefacts. 
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According to us, the hill algorithm is best suited for editing, because it can handle the greatest amount of 

editing before its shapes goes flat. This flattening occurs in terrain generated by fault algorithm and value 

noise much earlier, because these terrains doesn´t have so big differences between heights of vertexes. 

After applying modifications provided by the application, terrain becomes more realistic than before. Also, 

visual artefacts are removed. Suitable application of modifications can, according to us, leads to shapes that 

really resemble hills, mountains, craters and so on. 

Algorithms can be compared according to overall difficulty of terrain. We can obtain this value as sum of 

all edge values that occur in terrain represented as a graph. Each of algorithms has been launched twenty-

one times. Result are demonstrated in following tables. 

Table 2 Terrain generating algorithms 

Algorithm Average terrain difficulty 

Value noise 28118.30 

Hill algorithm 28932.99 

Fault algorithm 24749.41 

 

 

Figure 9 Terrain generating algorithms according to terrain difficulty 

CONCLUSION 

This paper deals with terrain generation and pathfinding in maps for educational purpose. To give students 

insight into this topic, application was created. This application shows some of mentioned methods for 

terrain generating, these are value noise, fault algorithm and hill algorithm. It is possible to edit raw terrains 

by smoothing, dilatation and 2 types of erosion. Pathfinding between 2 nodes is shown by Dijkstra 

algorithm, breadth–first search and A* with use of Euclidean and Manhattan metric. User can see the text 

output, that illustratively compares found paths per mentioned criteria. Moreover, the application contains 

graphical representation of edges between nodes of the graph, in which the path is searched for. These 
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edges have colour that depends on their difficulty. It is possible to hoover camera over terrain. Implemented 

algorithms for terrain generation and pathfinding have been compared among to chosen evaluating criteria. 
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